Phenolic Antioxidants from Lignin Pyrolysis

Richard A. Larson, Brajendra K. Sharma, Karen A. Marley, Dheeptha Murali, and John Scott

Pyrolysis of Wood and Lignin

Heating wood particles, birch lignin, or commercial Kraft lignin under nitrogen affords a distillate (bio-oil) that contains a great variety of compounds.

Pyrolysis (450 °C)

Selective extraction of bio-oil gives a fraction that is rich in phenolic compounds.

Synthetic Antioxidants

BHT production 1.2 million lb (2000): BHA 500,000 lb (2006)

Synthesized from petroleum; used in numerous products ranging from breakfast cereal to fuel oil

Health effects uncertain

Potential Natural Antioxidants

Structurally similar to BHT and BHA; potentially available from lignin, a natural polymer found in plant cells (especially wood) The phenolic fraction was examined by gas chromatography - mass spectrometry (GC-MS) and by high-performance liquid chromatography (HPLC), revealing a complex mixture of compounds:

The total phenolic fraction from either hardwood or softwood lignin was effective in an antoxidant assay (Mihalevic et al., 1996) using biodiesel – it was comparable in activity to an equivalent amount of BHT.

Peroxide formation at 60 C

Fraction # Antioxidant evaluation Components tentatively identified by hplc

1		
2		
3	no effect	alkylated guaiacols (methyl, ethyl, etc)
4	no effect	phenolic aldehydes, dimers
5	pro-oxidant	phenolic aldehydes, dimers
6	no effect	
7	no effect	phenolic aldehydes
8	anti-oxidant	methylguaiacol, dimers, oligomers? trace amounts of phenolic aldehydes
9	anti-oxidant	dimers? oligomers?
10	anti-oxidant	guaiacol, oligomers?
11		
12		guaiacol, oligomers?
13		
14	anti-oxidant	oligomers?
15	anti-oxidant	oligomers?
16	slight anti-oxidant	oligomers?

The later-eluting fractions also contain larger molecules, perhaps including dimers or higher oligomers.

R = H, OMe, Additional Phenolic Units

Bayerbach and Meier, J. Anal. Appl. Pyrol. 85:98 (2009)

.

Possible dimers in our fractions:

The remaining question: what is/are the active antioxidant(s)?